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EVENT TREES 

A-5.1  Key Concepts 

Event tree analysis is a commonly used tool in dam and levee safety risk analysis to identify, 

characterize, and estimate risk. Quantitative estimates for probability of failure and the resulting 

consequences can be obtained using event trees. Graphical depictions of potential failure modes 

and consequences can also be developed using event trees. Sub trees can be used to further 

evaluate specific events within the overall event tree structure. Sub trees are typically developed 

for individual potential failure modes to fully describe the sequence of events and/or conditions 

required to obtain failure.    

A logical progression of events is represented by the event tree beginning with an initiating event 

and continuing through to a set of outcomes. A typical progression might include an initiating 

event (flood or earthquake) followed by a system response (breach or non-breach) resulting in 

potential consequences (life loss, economic). Additional contributing events such as inoperable 

spillway gates (system response), flood fighting (system response), and exposure (consequences) 

can also be included in the event tree.   

An event tree consists of a sequence of interconnected nodes and branches. Each node is 

associated with an uncertain event (a crack forms in the embankment) or a state of nature 

(existence of adversely oriented joint planes). Branches originating from a node represent each of 

the possible events or states of nature that can occur. Probabilities are estimated for each branch 

to represent the likelihood for each event or condition. These probabilities are conditional on the 

occurrence of the preceding events to the left in the tree. Risks are typically annualized (e.g. 

annual probability of failure [APF] or annual life loss [ALL]) in the event tree by using annual 

probabilities to characterize the loading conditions. The conditional structure of the event tree 

allows the probability for any sequence of events to be computed by multiplying the probabilities 

for each branch along a pathway, in accordance with the multiplication rule of probability theory.  

The branching structure of the event tree allows the probability for any combination of event 
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sequences (e.g. total failure probability for a potential failure mode) to be computed by summing 

branch probabilities across multiple pathways.      

A-5.2  Event Tree Terminology 

An example event tree structure is presented in Figure A-5-1. Terms used to describe the event 

tree structure are illustrated in the figure and defined below. 

 

Figure A-5-1  Event Tree Terminology 

Branch – Represents an event or outcome and is usually designated by a line segment. 

Branch probability – The probability of the event represented by the branch conditioned on the 

occurrence of the events to its left in the event tree. 

Chance Node – A branching point in the event tree usually designated by a circle at the end of a 

branch indicating the occurrence of an unknown event. 

End Node – The outcome of a pathway belonging to the last level of branches in an event tree. 

An end node defines a possible end state for a sequence of events. 
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Pathway – A unique sequence of events representing a possible failure progression. 

Mathematically its probability is represented by the intersection of the events along the pathway. 

A-5.3  Event Tree Structure 

The starting point for an event tree is a triggering event (or state of nature).  For dam and levee 

risk analysis, this is typically a loading event such as a flood or earthquake. Subsequent events 

are then defined using a divergent branching structure where each branch represents a unique 

event. The branching structure is used to define all of the possible events that could occur along a 

given failure path. The sequencing of events in the tree should be logical but does not necessarily 

need to be chronological. 

Branches and their associated branch probabilities that are statistically dependent on preceding 

events must be shown along pathways to the right of the events on which they are statistically 

dependent. This is an important consideration in event tree construction because branch 

probabilities are mathematically defined as conditional probabilities. This also allows branch 

probabilities to be a function of a state variable in a preceding branch. The event tree in Figure 

A-5-2  illustrates an example where the probability of failure is conditional on obtaining a 

particular water surface stage during a flood event. 

 

Figure A-5-2  Conditional Event Tree Probaiblity 

The conditional structure of the event tree satisfies the probability calculus for the multiplication 

rule of basic probability theory; therefore, branch probabilities can be multiplied along a pathway 

to obtain the probability for the intersection of events along the pathway. In the preceding 

example, the probability of failure can be computed as P(Stage) * P(Breach|Stage). Branches that 

originate from a chance node are mutually exclusive and collectively exhaustive. This makes 

each event and pathway unique (mutually exclusive) and ensures that all possible events and 
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pathways are considered (collectively exhaustive). A result of this requirement is that branch 

probabilities originating from a node can be summed and the total sum across all branches is 

equal to one. This provides a convenient validation check for the probabilities entered into the 

event tree, as illustrated in Figure A-5-3. In practice, branches might not always be mutually 

exclusive or collectively exhaustive. For example, events that have a negligible contribution to 

the risk estimate could be omitted to reduce the size of the event tree. In these cases, validation 

checks may need to be modified by the risk analyst to account for the structure of the tree being 

used for a particular risk analysis.     

 

Figure A-5-3  Mutually Exclusive and Collectively Exhaustive Concepts 

Branch probabilities within a particular level of the event tree can be summed to obtain an 

aggregate probability (or risk) associated with a set of related events. The event tree in Figure A-

5-4 illustrates the summation of potential failure mode pathway probabilities to obtain the total 

probability of failure for Flood Interval 1. Total annualized life loss can be similarly obtained by 

multiplying the failure probability and associated consequences for each end branch and then 

summing across the end branches.  
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Figure A-5-4  Example Calculation for Probability of Failure 

A-5.4  Potential Failure Mode Event Trees 

It is common practice to develop detailed event trees for individual potential failure modes to 

clearly identify the full sequence of steps required to obtain failure or breach. Each identified 

potential failure mode is decomposed into a sequence of component events and conditions that 

must occur for there to be a failure. This ensures that due consideration is given to each event in 

the failure sequence. It also supports the identification of key issues contributing to the risk. An 

example event tree structure for an internal erosion potential failure mode is illustrated in Figure 

A-5-5. A challenge with estimating probabilities for detailed event trees is remembering that the 

probability of each event is conditional on that of predecessor events. For the internal erosion 

event tree example, this means that the probability estimate for the continuation branch should be 

based on an assumption that the flaw already exists and initiation has already occurred even if 

the probabilities for a flaw and initiation are very small. Examples and suggested event tree 

structures for common potential failure modes are provided throughout this manual. The 

suggested event trees should be adjusted as needed to address site specific conditions. 
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Figure A-5-5  Example Internal Erosion Potential Failure Mode Event Tree 

A-5.5  System Response Curves 

When system response is evaluated over a range of loads, the resulting relationship is called a 
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and levee safety due to the negative connotation that results from referring to a dam or levee as 

being ‘fragile’. 

System response probabilities are often elicited separately for different loading events. It is 

always good practice to plot the resulting system response curve over the full range of load 

magnitudes to make sure the elicited probabilities and the shape of the system response curve 

make sense. 

Potential failure mode event trees can be used to develop system response curves that describe 

the probability of failure or breach as a function of one or more loading parameters such as peak 

water surface elevation or peak ground acceleration. The failure mode event tree can then be 

evaluated for multiple loading partitions. Branch probabilities that are dependent on the 

magnitude of the load are modified for each loading partition. These probabilities can be 

estimated for the nodes of a potential failure mode event tree using a combination of analytical, 

          Flaw ?

          Initiation?

          Continuation?

          Progression?

          Unsuccessful Intervention?

          Breach?

Internal Erosion

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes



A-5-7 

 

empirical, and subjective methods. The number and spacing of load scenarios should be 

sufficient to describe the shape of the system response curve over the full spectrum of potential 

loads paying careful attention to transitions in system behavior. It is important to identify and 

include inflection points in the system response curve that represent significant changes in 

system behavior. A curve can be fit to the resulting data from each of the potential failure mode 

event trees so that the probability of failure can be estimated for any load condition by 

interpolation.  An example system response curve is presented in Figure A-5-6. 

 

Figure A-5-6  Example System Response Curve 

A-5.6  Consequence Event Trees 

Detailed event trees can be developed for consequence scenarios. These event trees typically 

include exposure scenarios to clearly identify the conditions that could lead to different 

consequences. This ensures that due consideration is given to the factors that may influence 

consequences. It also supports the identification of the key issues contributing to the estimated 

life loss. An example event tree structure for exposure is illustrated in Figure A-5-7. The 

example structure proceeds from the longest exposure case (season) toward the left of the tree to 

the shortest exposure case (time of day) toward the right of the tree so that the overall size of the 

event tree is minimized. This example reflects the estimation of non-breach consequences. The 

structure of the example event tree would also apply to the evaluation of breach consequences. 
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Figure A-5-7  Example Consequence Event Tree 

A-5.7  Event Tree Construction 

Each branch in the event tree should be clearly defined and representative of a specific event or 

state of nature. Parallel components can be aggregated into a single event if different 

combinations are inconsequential to the risk analysis. For example, it might be sufficient to 

represent failure of a single spillway gate using a single event tree branch if it doesn’t matter 

which particular spillway gate fails. Events that could influence other system components should 

generally be toward the left of the event tree to reduce the overall tree size. Constructing the 

event tree in chronological order is not required mathematically, but it usually improves the logic 

which can facilitate understanding and communication. The event tree structure should be 

designed to accommodate future needs such as the evaluation of risk reduction alternatives to 

minimize duplication of effort and provide consistency in the risk estimates across multiple 

phases of study. Avoid detailed development of branches that do not lead to outcomes important 

to the risk estimate or risk management decisions. Care should also be taken to avoid situations 
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where the estimated risk becomes a function of the number of branches in the event tree (i.e. 

adding more branches to obtain a lower risk estimate). Multiple branch levels can be combined 

into a single branch level when the added resolution does not significantly improve the 

understanding, estimation, or portrayal of risks. In a multiple branch event tree, event sequences 

with relatively low probabilities will not control the total AFP and can usually be excluded from 

the event tree. However, care should be taken to avoid underestimating the risk if too many 

branches are excluded or if the excluded branches could potentially be significant risk 

contributors under a different loading condition. Care should also be taken because excluding 

events can affect the mutually exclusive and collectively exhaustive requirements.  

A-5.8  Load Partitioning 

In dam and levee risk analysis, the annual failure probability (AFP) can be calculated as the 

integral of an annual exceedance probability (AEP) versus probability of breach curve. This 

curve can be obtained by combining (i.e. convolution) a loading curve and a system response 

curve. Similarly, the annual life loss can be calculated as the integral of an annual exceedance 

probability (AEP) versus life loss curve obtained by combining a loading curve, system response 

curve, and life loss curve. The concept is shown in Figure A-5-8. 

 

Figure A-5-8  Calculation of Annual Failure Probability 
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In practice, the discrete branches in an event tree provide an approximation of the integrals 

needed to calculate annual failure probability (AFP) and annual life loss (ALL). This is 

analogous to using Simpson’s rule (or the Trapezoidal Rule) to calculate a discrete 

approximation for a definite integral. This is done by dividing the flood or seismic loading curve 

into discrete loading partitions. The probability for a load interval can be computed from the 

exceedance probability loading curve as the difference between the exceedance probabilities at 

the upper and lower bound of the interval. An index value can be estimated for each loading 

interval. The index value should be a representative or average value over the loading interval.  

For flood and seismic loading intervals, the geometric mean (obtained by taking the square root 

of the product of the upper and lower bound) is commonly used as a reasonable average value 

because these random variables tend to be approximately lognormally distributed. The load 

partitioning concept is illustrated in Figure A-5-9.   

 

Figure A-5-9  Load Partitioning Concept 
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intervals at a spacing that adequately characterizes the differences in the various event tree input 

functions. More intervals will improve numerical precision, but can increase the event tree size 

and estimation burden. When a large number of intervals are used, end branches can be 

aggregated into bins by summation to facilitate interpretation and communication of results. An 

examination of event tree probabilities such as probability of failure and other values such as 

consequences at both the lower and upper bounds of each interval can provide insights as to 

whether or not the intervals are appropriately sized. A significant change from the lower to the 

upper bound might indicate a need for more intervals. 

The partitions should also consider a non-exceedance and an exceedance interval. The non-

exceedance interval can be established based on a threshold loading below which the probability 

of failure and consequences are negligible. This becomes the bottom end of the lowest load range 

for which risks are estimated. The lower bound for the non-exceedance interval should be an 

annual exceedance probability of 1 and the upper bound of the interval should be defined by the 

threshold event. While simple in concept, the selected threshold value can have a significant 

influence on the estimated risks. Sensitivity analysis is sometimes performed to evaluate whether 

refinement of the selected threshold is needed. The exceedance interval establishes the largest 

loading condition for which risks are estimated. It is important to assess whether or not there 

could be any significant contributions to the total risks attributable to extreme loading. Would 

the risk significantly change if an additional higher loading interval was added to the analysis? If 

agency protocol establishes an upper bound for loading (e.g. probable maximum flood), then the 

exceedance interval can be defined based on agency protocol. The lower bound for the 

exceedance interval is the threshold for the largest loading that will be considered and the upper 

bound of the interval is undefined (open ended interval).   

A-5.9  Uncertainty 

Risk estimates should give due consideration to uncertainty and sensitivity.  Two important 

questions to consider when evaluating and communicating uncertainty are: 

 Does the uncertainty significantly impact the decision? 

 How easily can the uncertainty be reduced?    
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Key areas of uncertainty and sensitivity should be identified and portrayed. This can be 

accomplished using a variety of qualitative and quantitative techniques. Most of the techniques 

used in event tree analysis are quantitative. 

Sensitivity analysis can be used to evaluate how different assumptions influence the risk 

estimate. It provides a way to evaluate alternative outcomes if a situation turns out to be different 

than anticipated. Evaluation of the alternative outcomes can facilitate the identification of key 

assumptions and the potential value added by additional study. For example, investigations to 

assess the slip rate for a fault may not be justified if the total risk estimate is not sensitive to the 

probability estimates associated with this parameter or if the uncertainty in the total risk estimate 

will not be meaningfully reduced. Reasonable best case and reasonable worst case assumptions 

can be used as a starting point for the sensitivity analysis. Sensitivity analysis typically only 

considers a limited number of parameters for each scenario. Combining worst (or best) case 

assumptions for all input parameters is not recommended because the probability that all 

parameters are unfavorable (or favorable) in situ is usually remote.  

Uncertainty analysis can be accomplished by using probability distributions to define event tree 

variables. This is done to characterize the knowledge uncertainty in the event tree inputs. This 

uncertainty can, at least in theory, be reduced by acquiring more information. Distributions that 

are commonly used in dam and levee safety risk analysis include the uniform, triangular, normal, 

log-normal, and PERT. The distributions can be applied to variables such as peak reservoir stage, 

peak ground acceleration, the conditional probabilities of various events, and life loss 

consequences. Monte Carlo simulation techniques can be used to generate random samples from 

these distributions. Probabilities and risks are calculated for many random samples (typically 

10,000 or more) to characterize the uncertainty in the total risk estimate. It is not always practical 

or possible to quantify all sources of uncertainty; therefore, it is important to document the 

significant uncertainties that were included in the event tree analysis and those that were not 

quantified but are still relevant. 

Natural variability (aleatory uncertainty) associated with random events such as floods or 

earthquakes is typically accounted for in the event tree by the hazard curve itself which defines 

the full range of plausible event magnitudes and frequencies. The knowledge uncertainty is 
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typically defined using confidence limits around the hazard curve. Both sources of uncertainty in 

the hazard can be modeled and combined in an event tree analysis. The natural variability is 

typically modeled by using loading partitions over the full range of loading. The knowledge 

uncertainty can be modeled by sampling from the uncertainty distribution for each partition. An 

alternative technique would be to develop and run a stochastic simulation model that randomly 

selects a flood or earthquake event for each trial of the simulation. Many trials can be performed 

to capture the full range of possible loading events and outcomes. 

A-5.10  Monte Carlo Simulation 

Monte Carlo simulation is a mathematical technique that is used to evaluate uncertainty in risk 

analysis. It provides a means to evaluate the uncertainty in a risk estimate by combining the 

uncertainties for all of the event tree inputs. Commercial software such as @Risk, Crystal Ball, 

and many others can be used to perform the calculations. A Monte Carlo simulation samples a 

possible value for each random variable in an event tree based on its probability distribution.  

The inverse transform sampling methods is commonly used. A pseudo random number generator 

(PRNG) generates a random number between between 0 and 1 from the uniform distribution. 

This random number is then applied as a value of the cumulative distribution function (CDF) for 

the random variable. A random value for the variable is then obtained by applying the CDF value 

to the probability distribution for the random variable. When enough samples are taken, the 

resulting distribution of the random variable samples will very closely match the probability 

distribution from which the values were sampled.  

Each sample in the Monte Carlo simulation produces a single estimate of the total risk for a 

given PFM. The sampling process is repeated many times to obtain many estimates of the total 

risk. If enough samples are taken, the compiled estimates of risk can be used to portray a 

probability distribution of the total risk. It is not uncommon in dam and levee safety risk analysis 

that 10,000 or more samples are required to obtain a reasonable result. The sampled estimates of 

risk can be portrayed in various ways to assess and communicate the uncertainty in the total risk 

estimate. A common approach is to show each sampled risk estimate (FFP or ALL) as a point on 

the f-N chart (along with the mean value of the risk samples). The resulting cloud of points can 

provide risk analysts and decision makers with information on the magnitude of uncertainty.  
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Percentiles can also be estimated from the sampled risk estimates to characterize the likelihood 

that the total risk estimate will fall either above or below risk guidelines. 

Consider the following example for a potential failure mode that could initiate at flood loadings 

greater than a 10 year flood. The conditional probability of failure was estimated by expert 

elicitation and the uncertainty in the estimate is described by a triangular distribution with a 

lower bound of 0.00001, an upper bound of 0.0005, and a most likely (mode) of 0.0002.  

Potential life loss was estimated from an analytical model and the uncertainty in the estimate is 

described by a triangular distribution with a lower bound of 60, an upper bound of 120, and a 

most likely (mode) of 80. An event tree is illustrated in Figure A-5-10. PrecisionTree and @Risk 

were used to develop the event tree and perform the Monte Carlo simulation. The PrecisionTree 

model settings for @Risk simulation were set to ‘expected values of the model’ as illustrated in 

Figure A-5-11.  The conditional probability of failure and consequences were input using the 

‘define distribution’ feature in @Risk.  The annual probability of failure (e.g. value of ‘f’ for the 

f-N chart) is equal to the total probability along the breach pathway obtained by multiplying the 

probability of the flood by the probability of failure.  The value of ‘N’ for the f-N chart is simply 

the life loss associated with a breach.  

 

Figure A-5-10  Event Tree for Monte Carlo Simulation Example 
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Figure A-5-11  Precision Tree Settings for Monte Carlo Simulation Example 

A 1000 iteration Monte Carlo simulation was performed on the event tree using @Risk.  The 

results are presented on the f-N chart in Figure A-5-12.  The mean estimate was obtained by 

taking the arithmetic averages of the annual failure probability and life loss samples from the 

Monte Carlo simulation. Although the Monte Carlo simulation results straddle the risk 

guidelines, the mean estimate is above the guidelines.  By counting the number of Monte Carlo 

simulation results that are above the guidelines (873) and dividing by the total number of trials 

(1000), the risk analyst might conclude that there is a relatively high likelihood (about 87%) that 

the risk actually does exceed the guidelines. 

 

Figure A-5-12  Monte Carlo Simulation Results 
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A-5.11  Curve Sampling 

Typical Monte Carlo simulations include the sampling of values from functions either explicitly 

or implicitly. This includes sampling of flood and seismic loadings from hazard curves, sampling 

performance from system response curves, and sampling consequences. It is important that the 

sampling technique produces numbers in the event tree that are logical and mathematically valid.  

Consider the simple event tree shown in Figure A-5-13 with three flood loading partitions in the 

context of one potential failure mode. The probability of failure for the two breach branches is 

defined by the triangular distributions shown in Figure A-5-14. 

 

Figure A-5-13  Event Tree for Curve Sampling Example 
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Figure A-5-14  Uncertainty for Curve Sampling Example 

If the probabilities of failure for each load partition are independently sampled, the probability of 
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failure sampled for the larger load partition. This occurs because of the overlap in the uncertainty 

distributions over the two loading partitions. This result is physically impossible and 

mathematically invalid because the probability of failure in this example must increase as the 

load increases. The higher load partition cannot have a smaller probability of failure. The end 

result is that the uncertainty portrayed by the Monte Carlo simulation results may not be correct 

and could potentially misinform decision makers. For this example, a summary of the results for 

1000 samples is shown in Figure A-5-15. All of the samples should plot below the line of 

equity.  In other words, the sampled probability of failure for the 100 year load partition should 

always be greater than the sampled probability of failure for the 10 to 100 year load partition. In 

this example, some of the samples plot above the line of equity indicating an error in the event 

tree model. Since there are relatively few samples that plot above the line of equity, the error 

might not be significant in this example. 
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Figure A-5-15  Curve Sampling Using Independent Samples 

Similar situations can occur with random variables for other event tree branches.  For example, a 

peak ground acceleration that is sampled for a less frequent load partition could end up being 

smaller than the peak ground acceleration that is sampled for a more frequent load partition. 

Again, this would be a physically impossible and mathematically invalid result for that particular 

sample. PGA must always increase with increasing return period (or with decreasing exceedance 

probability). 

These types of sampling issues can be resolved by generating a sample for the entire curve rather 

than independently sampling individual load partitions. The consistent percentile method is one 

technique that can be used for curve sampling. A random number between 0 and 1 is first 

sampled from a uniform distribution. This value is then applied as a percentile for each of the 

load partitions. Using the system response from the previous example (Figure A-5-14), the 

concept is illustrated in Figure A-5-16. A generated random number of 0.6 would be applied to 

the cumulative distribution function of system response for both load partitions to obtain 

probability of failure estimates of about 0.006 and 0.02. The results for 1000 samples are shown 

in Figure A-5-17. Note that all of the samples now plot below the line of equity which means 

that the probability of failure for the larger load partition is always greater than the probability of 

failure for the smaller load partition. However, the results reveal a potential disadvantage of the 
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consistent percentile method. The high degree of correlation observed in the samples (Figure A-

5-17) may not be realistic and may not adequately capture the uncertainty in the risk estimate. 

More advanced techniques, such as bootstrap sampling, are available to avoid this issue.  

 

 Figure A-5-16  Consistent Percentile Sampling Concept 

 

Figure A-5-17  Curve Sampling Using Consistent Percentile 
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Consider an example where the mean seismic hazard is described by the relationship in Figure 

A-5-18. The uncertainty is characterized by the 5th, 16th, 50th, 84th, and 95th percentile curves.  

 

Figure A-5-18  Seismic Hazard Curve Example 

The risk analyst has decided to partition the loading for the event tree with two partitions having 

a peak ground acceleration of 0.08g and 0.2g. The annual exceedance probability values can be 

tabulated for each percentile and each partition.  The concept is illustrated in Figure A-5-19 for a 

peak ground acceleration of 0.2g. The results for both load partitions are summarized in Table A-

5-1. 
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Figure A-5-19  AEP Values for 0.2g Load Partition 

Table A-5-1 Summary of AEP Values for Two Load Partitions 

PGA AEP 5th AEP 16th AEP 50th AEP 84th AEP 95th 

0.08 4.90E-04 7.43E-04 1.04E-03 2.63E-03 3.48E-03 

0.2 2.62E-05 5.80E-05 9.87E-05 2.36E-04 4.32E-04 
 

The tabulated values can be used to define a probability distribution representing the uncertainty 

in AEP for each load partition. This can be accomplished by simply using the percentile values 

from the table and interpolating for intermediate percentile values or by fitting an analytical 

distribution to the percentile data. The resulting distribution can then be included in an event tree 

model using Monte Carlo analysis to quantify the uncertainty in the risk. If partitions beyond the 

limits of the data shown in Figure A-5-17 are needed, the risk analyst must make some 

assumptions in consultation with the project seismologist to define if and how the data should be 

extrapolated. 

A-5.12  Software 

Event tree models and calculations can be prepared using commercial software, custom built 

spreadsheets, or software specifically designed for dam and levee safety risk analysis. 

Reclamation typically uses the Decision Tools Suite by Palisade. The Decision Tools Suite 
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includes @Risk for Monte Carlo simulation, Precision Tree for event tree analysis, and several 

other tools that support statistical analysis. These software packages are fully integrated with 

Microsoft Excel for ease of use. USACE uses both Decision Tools Suite and a custom software 

package called DAMRAE (Dam Risk Analysis Engine). The DAMRAE software includes an 

event tree construction and calculation algorithm specifically designed for dam and levee risk 

analysis. Other commercial software packages are available.   

A-5.13  Exercise 

Develop an event tree given the following potential failure mode description. 

As a result of high reservoir levels and an increase in uplift pressure on the old shale layer slide 

plane or a decrease in shearing resistance due to gradual creep on the slide plane, sliding of the 

buttress initiates. Significant differential movement between adjacent buttresses occurs causing 

the deck slabs to unseat from their simply supported condition on the corbels. Failure of the 

upstream slab through two bays results, followed by progressive collapse of the adjacent 

buttresses due to the lateral loading. An uncontrolled release of the reservoir occurs. 

 


